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Gasoline/Diesel PM Split Study
Objective:
• To quantify the relative contribution of PM emissions from gasoline- and 

diesel-powered engines in the South Coast Air Basin
• Examine range of uncertainties that may be associated with sample 

collection, chemical analysis and source apportionment 
Sources of Uncertainty and Variations in CI/SI Apportionment:
• Emissions Characterization

– Variability in abundance of “marker species”, normal versus high emitter
– Test cycle and condition (ambient temperature)

• Ambient Measurements
– Spatial variations and temporal variations (diurnal, weekday and seasonal)
– Atmospheric transformations

• Measurement Methods
– Sampling methods
– Analytical methods (e.g., thermal/optical OC and EC)

• Application of CMB Receptor Model
– Derivation of composite profiles and uncertainties
– Choice of source profiles
– Choice of fitting species
– Presentation of results



Vehicle Profiles – Carbon Fractions by IMPROVE-TOR 

Gasoline/Diesel PM Split Study, Fujita et al., 2005

Heavy-Duty Diesel Trucks
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Source: Pat Arnott (2003)
NREL Gas/Diesel Split Study

Most PM emissions during UDC from cold start and 
hard accels with higher fraction of black carbon.

Black Carbon Emissions Rates During UDC



Gasoline/Diesel PM Split Study

Fixed Site and Mobile Ambient Sampling

• Downtown Los Angeles and Azusa - daily 24 hour for 
four consecutive weeks, composite by day-of-week

• Variety of locations with variable amount of gasoline and 
diesel traffic



Mobile Sampling – Photoacoustic BC and DustTrak PM2.5
Parking Lot After Sporting Event

Gasoline/Diesel PM Split Study

Rose Bowl after Soccer Game, Fri 7/14/01 2030-2208
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Gas Diesel PM Split Study 
Mobile Sampling – Photoacoustic BC and DustTrak PM2.5

Freeway, Monday 7/9/01 1045-1326
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Distributions of OC and EC fractions (IMPROVE) at 
Azusa, Los Angeles N. Main and Source Locations  

Gasoline/Diesel PM Split Study, Fujita et al., 2005
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Heavy-Duty Diesel
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y = 0.69x
R2 = 0.76
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IMPROVE-TOR gave higher CI source 
contributions than STN-TOT. 

Gasoline Exhaust
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SCE - Spark Ignition Exhaust
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Emission Rates of Particulate PAH

Gasoline/Diesel PM Split Study, Fujita et al., 2005

Heavy-Duty Diesel Trucks
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Concentrations of Particulate PAH in Lubrication Oil 
Samples Taken from Test Vehicles

Gasoline/Diesel PM Split Study, Fujita et al., 2005
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Steranes in Lubrication Oil Samples

Gasoline/Diesel PM Split Study, Fujita et al., 2005

Concentration (ug/g of oil)
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CI Vehicles
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Hopanes in Lubrication Oil Samples

Gasoline/Diesel PM Split Study, Fujita et al., 2005

Concentration (ug/g of oil)
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CI Vehicles
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Total Carbon (IMPROVE)
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Elemental Carbon Source Contributions

Elemental Carbon (IMPROVE)
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Organic Carbon Source Contributions
Organic Carbon (IMPROVE)
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Variations in Source Contribution Estimates (Percent of Total)
Azusa and Los Angles Weekday Ambient Samples

Compression-Ignition Spark-Ignition
IMPROVE STN STN no PAH IMPROVE STN STN no PAH

TC

   Mean 40.9 30.8 31.3 6.6 9.4 11.4

   Std Dev 3.7 3.0 2.7 1.3 3.3 3.5

   Std Err 1.2 1.0 0.9 0.4 1.0 1.1

OC

   Mean 22.1 15.8 16.1 7.4 10.4 12.2

   Std Dev 2.6 2.0 1.9 1.7 3.6 3.7

   Std Err 0.8 0.6 0.6 0.5 1.1 1.2

EC

   Mean 90.3 93.3 65.9 4.5 5.2 7.2

   Std Dev 3.3 3.4 5.9 1.0 2.1 2.0

   Std Err 1.0 1.1 1.9 0.3 0.7 0.6



Los Angeles N. Main

0

4

8

12

16

20

SI
_L

W
SI

_H
W

SI
_H

BW
SI

_L
C

SI
_H

C
SI

_H
BC

SI
_1

W
1

SI
_2

W
1

SI
_3

W
1

SI
_4

W
1

SI
_5

W
1

SI
_6

W
2

SI
_6

W
3

SI
_7

W
1

SI
_7

W
2

SI
_8

W
1

SI
_8

W
2

SI
_9

W
1

SI
_9

W
2

SI
_7

W
3

SI
_1

0W
1

SI
_1

0W
2

SI
_1

0W
3

SI
_1

0W
5

SI
_8

W
3

SI
_9

W
3

SI
_9

W
4

SI
_1

0W
4

SI
_2

C
1

SI
_4

C
1

SI
_5

C
1

SI
_6

C
2

SI
_7

C
1

SI
_8

C
1

SI
_9

C
1

SI
_7

C
2

SI
_7

C
3

SI
_1

0C
1

SI
_1

0C
2

SI
_1

0C
3

SI
_6

C
3

SI
_8

C
2

SI
_9

C
2

Composites Low-Warm High-Warm Black-Warm Low-Cold High-Cold Black-
Cold

%
 S

C
E

Azusa

0

4

8

12

16

20

S
I_

LW

S
I_

H
W

S
I_

H
B

W

S
I_

LC

S
I_

H
C

S
I_

H
B

C

S
I_

1W
1

S
I_

2W
1

S
I_

3W
1

S
I_

4W
1

S
I_

5W
1

S
I_

6W
2

S
I_

6W
3

S
I_

7W
1

S
I_

7W
2

S
I_

8W
1

S
I_

8W
2

S
I_

9W
1

S
I_

9W
2

S
I_

7W
3

S
I_

10
W

1

S
I_

10
W

2

S
I_

10
W

3

S
I_

10
W

5

S
I_

8W
3

S
I_

9W
3

S
I_

9W
4

S
I_

10
W

4

S
I_

2C
1

S
I_

4C
1

S
I_

5C
1

S
I_

6C
2

S
I_

7C
1

S
I_

8C
1

S
I_

9C
1

S
I_

7C
2

S
I_

7C
3

S
I_

10
C

1

S
I_

10
C

2

S
I_

10
C

3

S
I_

6C
3

S
I_

8C
2

S
I_

9C
2

Composites Low-Warm High-Warm Black-Warm Low-Cold High-Cold Black-
Cold

%
 S

C
E

Variations in SI Exhaust Contributions to TC by Profile



0

20

40

60

80

hd
d

hc
s_

10

hc
s_

11
n

hw
_1

0

hw
_1

1

hw
_1

1n

hw
_9

e

m
dd

hc
s_

5

hc
s_

iib

hw
_5

hw
_i

i

hd
d

hc
s_

10

hc
s_

11
n

hw
_1

0

hw
_1

1

hw
_1

1n

hw
_9

e

m
dd

hc
s_

5

hc
s_

iib

hw
_5

hw
_i

i

HDD MDD HDD MDD

Azusa Los Angeles N. Main

%
 S

C
E

Variations in CI Exhaust Contributions to TC by Profile



Factors Affecting Apportionment of CI/SI Exhaust

• CI apportionments were mainly dependent upon EC. CI contributions were greater with 
IMPROVE.

• SI apportionments were most sensitive to PAHs ( indeno[123-cd]pyrene, 
benzo(ghi)perylene, and coronene) and steranes and hopanes. EC had little effect on SI 
apportionment. 
– EC emission for SI vehicles were minimal except in cold start and hard accels.
– “Marker” PAHs were present in used SI engine lubrication oil in similar proportions but 

concentrations tended to increase with age of the oil.
– Most of the SI apportionment was associated with the high emitter profile. Apportionment 

varied with specific high-emitter profile.
– Removing PAHs from the fit increased SI contributions relative to CI.

• CI and SI apportionments varied with location and time.
– CI vehicles were the dominant mobile source of EC and TC at Azusa and LANM. 
– More equal apportionment at other locations that are more regionally representative. 
– SI vehicles were the dominant mobile source of OC and EC in locations and times with 

minimal truck traffic.

• Alternative methods for deriving composite profiles and uncertainties had minor effect 
on apportionment.



Implications
• Emissions of black carbon and PM were low for most SI 

vehicles except in cold start mode and during hard 
accelerations. Effect of test cycle?

• CI vehicles were the dominant source of EC. EC is a 
reasonable surrogate of PM emissions from CI vehicles 
in the SoCAB.

• A larger fraction of the SI source contribution to OC was 
attributed to high emitters. Existing control programs do 
not address high PM emitting vehicles.

• Spatial and temporal variations in relative CI and SI 
apportionments were large. Must consider purpose of 
sampling and source apportionment (compliance with 
ambient standards, reconciliation with emission inventory 
data, exposure assessment).



Implications

• PM concentrations and exposures were higher on and 
adjacent to major roadways with high volume of diesel 
truck traffic. Exposures were also higher when following 
high-emitting gasoline vehicles. Existing monitoring 
programs do not account for these higher exposures.

• Motor vehicles were significant contributors to semi-
volatile organic compounds. These compounds are not 
routinely measured. 

• Significant fraction of the organic carbon during summer 
in the SoCAB could not be apportioned to directly-emitted 
PM emissions from motor vehicles. What are the 
relative contributions of SI and CI exhaust to 
secondary organic aerosols?
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